WSET Level 4 Diploma Unit 2 - Viticulture Quizlet

Study online at quizlet.com/_3w6f0

1.	Basic building block of the vine	GLUCOSE - combines to produce cellulose for roots, trunks, shoots, leaves and fruit - tannins, acids and flavor molecules in the grape	15. Average mean temperature of moderate climate16.5-18.5 C		
			16. Typical moderate-climate regions	Bordeaux N Rhone Rioja Piedmont	
2.	Important environmental needs for vines	Sunlight, water & carbon dioxide - photosynthesized by Chorophyll to produce glucose - CO2 always available, so only sunlight and water matter		Tuscany Coonawarra Marlborough Napa Sonoma	
3.	What affects the metabolism of the vine?	Temperature	17. Moderate-climate wines	Medium-bodied wines from intermediate- ripening varieties e.g. Cabernet Sauvignon, Merlot,	
4.	Vines' dormancy temperature	10 C			
5.	Vine growth to peak temperature	22-25 C		Sangiovese	
6.	Too high temperature	25 C	 Average mean temperature of warm climate 	18.5-21 C	
	for vine growin	metabolic needs increase faster than its ability to photosynthesize sugars	19. Typical warm-climate regions	S Rhone Douro Jerez McLaren Vale	
7.	Growing season in the northern hemisphere	April to October	147	Paarl	
8.	Growing season in the southern hemisphere	October to April	20. warm-climate wines	e.g. Grenache, Mourvedre, Ruby Cabernet Fortified wines	
9.	The annual weather pattern of an area	Climate			
	averaged over several years		21. Average mean temperature of hot climate	Over 21 C	
10	Climate parameters	Rainfall Temperature	22. Typical hot-climate regions	San Joaquin Valley, CA	
11	Regional climate classification (by	Cool Moderate	23. Hot-climate wines	Table and drying grapes	
10		Hot	24. Difference between the average mean temperature of the hottest	Continentality	
12	temperature of cool climate	below 10 C	month and the coldest month 25. Regional climate classification (by	Maritime	
13	Typical cool-climate regions	Champagne Mosel Southorn England	degree of "continentality")	Mediterranean Continental Tropical	
		Anderson Valley Tasmania Carneros	26. Maritime climate characteristics	Low annual range of temperature Warm summers and mild winters Relatively high rainfall and cloud cover Near large bodies of	
14	Cool-climate wines	Cool-climate wines Early ripening varieties e.g. Chardonnay, Pinot Noir			
				water	

 27. Typical maritime- climate regions 28. Maritime-climate wines 	Bordeaux Eastern coast of New Zealand S England Medium-bodied wines with	38. Tropical climate characteristics	Minimal annual range of temperature Hot summers and warm winters Rainfalls more deciding factor Unsuitable for high quality viticulture Shortened vine productive lifespan
	moderate alcohols e.g. Bordeaux reds and whites, Muscadet, Rias Baixas, Vinho Verde	39. Typical tropical- climate	Brazil India Thailand
29. Mediterranean climate characteristics	Low annual range of temperature Warm sunny summers and mild winters Dry summers with most rain in	40. What is aspect? How does it affect a vineyard?	Direction a vineyard slope faces - an important characteristic of a vineyard site - determines exposure to sun
30. Typical Mediterranean- climate regions	winters Long growing season Mediterranean West coast of the United States Chile	41. Preferred aspect in cool climates in northern hemisphere	South facing - warmer - aiding the ripening process
31. Mediterranean-climate	SE Australia W Cape, S Africa Full-bodied, rich-textured reds with ripe tannins	42. What is slope? How does it affect a vinevard?	Degree of incline - determines intensity of sunlight received
32. Continental climate characteristics	Wide annual range of temperature Hot summers and cold winters	43. Advantages of east facing vineyards	Sun's rays scattered less in the morning, when the earth has cooled overnight, and dust has settled
	Inland Dry Short growing season	44. Disadvantages of west facing vineyards	Sunlight scattered more by dust that has been lifted by warming air during the day; Face damper, cooler prevailing weather
 33. Typical cool continental- climate regions continentality and long day length cool autumns 	Burgundy Champagne Northern regions of Germany British Columbia Alsace Austria	45. Aspect and slope for locations that would otherwise be	Slopes that face away from the equator
34. Grapes in regions with continentality and long days	- Riesling - Pinot Noir	46. Influence of slope or	Sunlight interception Air movement
35. Cool continental-climate wines	Intensely-flavoured, late- harvested whites	incline on a vineyard	Soil properties Cost of working the land
	High alcohols Sweet wines	47. Advantages of sloping	Air movement on slopes (i.e. cold and dense air move downhill displacing warm and
36. Typical warm continental-climate regions	Mendoza Central Europe Central Spain	vineyards	less dense air to produce warm thermal layers on the slope) deters frost and offers slightly improved ripening potential;
 37. Warm continental- climate wines long warm autumns 	Malbec Cabernet Saurignon		Soils on slopes tend to be poorer, more coarse for better drainage
		48. Disadvantages of sloping vineyards	Increased risk of erosion; Higher costs (manual), e.g. the Mosel Valley

49	Ideal vineyard sites	Isolated hills - no big currents of colder air flowing down from the main hills e.g. Burgundy's hill of Corton at Aloxe-Corton, Montagne de Beims in Champagne	59.	59. Amerine & Winkler's Category I	GDD < 1370 (2500) Anderson Valley, Caneros, Edna Valley, Marin, Mendocino, Monterey, Napa, Russian River Valley, Santa Clara, Santa Cruz Mountains, and Sonoma cf. Champagne, Cote d'or, Rhine, Friuli, Tasmania Marlborough Willamette Valley (OR)
50	Effects of canopy management	Affect climate in the fruiting zone, therefore style and quality of wines			finest light white wines (riesling, chardonnay) pinot noir
51	Effects of thick vigorously-growing canopy in cool-climate regions	Reduce flower initiative and berry set due to shading; Higher acid retention due to cooling; Reduce sugar accumulation due to humidity & shade; Encourage competition for sugar	60.	Amerine & Winkler's Category II	1370 < GDD < 1650 (2501 - 3000) Napa, Alexander Valley, Chalk Hill, Potter Valley cf. Bordeaux, N Rhone, Alsace, Yarra Valley, Frankland River premium medium-bodied reds (cabernet sauvignon, merlot, syrah) chardonnay, semillon, sauvignon blanc
52	Temperature's effects on yield	Rate of growth; Number of flower clusters and size; Success of the setting of flowers into berries	61.	61. Amerine & Winkler's Category III	1650 < GDD < 1930 (3001 - 3500) Paso Robles, Lake, McDowell Valley, San Benito cf. Barossa Valley, Stellenbosch, S Rhone, Clare
53	Conditions for finest tastes and aromas	Slow, cool, berry ripening			premium full-bodied reds (zinfandel, grenache,
54.	Temperature's effects on quality	Level of yield; Accumulation of sugars and reduction of acidity; Development of wine aromas Phenolic ripeness (tannins)	62. Amerine & Winkler's	ruby cabernet) 1930 < GDD < 2200 (3501 - 4000) Amador	
55	Low winter temperatures	Freeze injury to domancy at -15 C; serious injury at -20 C; fatal at -25 C		U IV	cf. McLaren Vale, Upper Hunter, Langhorne Creek, Montpellier best fortified wines
56	Protection of vines against very low temperatures	Insulation by snow or earth pushed up around the vine	63. Amerine & Winkler's	GDD > 2200 (4000) San Joaquin	
57	Too cold site for viticulture	below -20 C more than once every 20 years; or mean temperature for coldest month below -1 C	Category V		cf. Greek Islands, Jerez, Sicily, Sardinia bulk wines, table and drying grapes primitivo, pero d'avola, palomino, fiano
58	Amerine & Winkler's Heat Summation System (1944) - mainly used in CA	Growing Degree Days (GDD) = (mean temperature for the month - 10) x no of days in the month			prime to, noto a atom, patoninio, nano
		Sum of GDDs for 7 month growing season			

 64. Why Amerine & Winkler Heat Summation System works in CA, but not Australia? 65. Limitations of Amerine & Winkler Heat Summation 	In CA, many factors correlated with degree days (e.g. temperature variability, sunlight, humidity); or don't vary greatly across region (e.g. sunlight angle, day length) Nonlinear relationship between vine growth and temperature; Vine growth slows significantly when	74. EU Region C3b	Portugal (ex Vinho Verde), S Spain, Puglia, Sicily, most of Greece; Min 9% abv; Max 2% to 13.5% enrichment;
System	> 30 C	X47 - 4	0 - +2.5 g/L
66. Smart and Dry System (Australia)	mean temp of warmest month (July/Jan) with corrections for continentality, sunlight hours and day length (latitude), humidity, rainfall and evaporation	75. Water-stress on wine quanty	during berry maturation improve quality; Severe stress is detrimental
67. Key features of EU zones of production	As the region gets warmer - min potential alcohol requirement increases; - level of must enrichment decreases; - illegal deacidification, legal acidification	76. Precipitation needed	Cooler regions : about 500mm/yr Hotter regions: as much as 750mm/yr
68. EU Region A	Germany (excl Baden), UK; Min 5% abv; Max 3.5% - 11.5% enrichment (12% for reds);	77. Factors affecting water requirements during growing season	vine density; soil water holding capacity; time of rainfalls
69. EU Region B	-1 - 0 g/L acid adjustment Loire, Champagne, Alsace, Austria; Min 6% abv;	 78. How many litres of rain does a vine get a year in La Manchai planted at 1,000 vines per hectare with 300 mm precipitation? 	3,000 litres
	Max 2.5% - 12% enrichment (12.5% for reds) -1 - 0 g/L acid adjustment	 79. How many litres of rain does a vine get a year in Bordeaux planted at 	1,000 litres
70. EU Region C1a	Bordeaux, SW France, Rhone, Vinho Verde;	8,000 vines per hectare with 800 mm precipitation?	
	Min 7.5% abv; Max 2%-12.5% enrichment; -1 - 0 g/L acid adjustment	80. Disadvantages of excess rain	Cool the mesoclimate; More difficult for machinery to work; Increase risk of fungal disease; Reduce fruit set (esp. in low temp); Brunch compaction and berry splitting; Dilute must if rains before harvest
71. EU Region C1b	Hungary, Trentino-Alto Adige; Min 8% abv; Max 2% to 12.5% enrichment; -1 - +2.5 g/L acid adjustment		
72. EU Region C2	Languedoc-Roussillon, Provence, N Spain ex Atlantic coast, Italy; Min 8.5% abv; Max 2% to 13% enrichment; -1 - +2.5 g/L acid adjustment		
73. EU Region C3a	Parts of Greece Min 9% abv; Max 2% to 13.5% enrichment		
	0 - +2.5 g/L acid adjustment	81. Purpose of sunlight	Energy source for vines to build sugars Increase temperature of vineyard

82. Effects of sunlight in cool temperatures	Rate of photosynthesis slows; Increase leaf area and canopy to compensate; Exposure of fruit to sunlight enhance ripening;	93.	Proximity to forests	Pros: windbreaks; store heat; reduce erosion Cons: cool the mesoclimate in warm weather and increase humidity; birds
	Eliminate pyrazines in Bordeaux varieties	94.	94. Effects of altitude	Mean annual temp decreases by 0.6 C for every 100m rise in altitude (or a reduction
83. Exposure of fruit to sunlight	Increase rate of ripening; Increase risk of sunburn;			of 105 degree-days a year) Increase the cooling effects of wind
84. Effect of daylength(photoperiod)	Regions in high latitudes have longer summer days (more exposure to sunlight) to offset lower temperatures e.g. Mosel, S England, Central Otago	95.	Mountain ranges	Protection from excessive wind and rain (rain shadow) e.g. Alsace & Vosges mountains
85. Effects of sunlight on vine	Indirect effect due to heat accumulation; Direct effect on bud viability, flowering,	96.	Purpose of soil	Support vine; Provide nutrients
growth	berring ripening, and cane/shoot maturation; Direct effect on photosynthesis		97. Soil characteristics	Nutrients Pets & rootstock Water holding capacity and availability
86. Effects of sunlight on yield	Amount of sugar produced by photosynthesis			Heat retention Fertility
and quality	y - warm & cloudy (Hunter Valley)> low sugars; - cool & sunny (Central Otago)> high sugars	98.	98. Soil fertility	Soil texture Soil structure Organic matter content Mineral content Availability of air and water Level of acidity/akalinity
87. Sunlight required for vitis	> 1250 hours of sunshine to produce ripe fruit			
88. Proximity to large town or city	10% less sunlight due to pollution	99.	Soils with low fertility	Vines grow best on these soils - restrict canopy growth; - often stony and well-drained
89. Geographical features affecting climate	Bodies of water; Ocean currents Forest Altitude and mountain ranges	100	o. Soil texture	Size of particles clay < 0.002mm silt < 0.02mm fine sand < 0.2mm
90. Advantages of proximity to bodies of water	Store heat Reflect sun's rays; Souce of irrigation; Reduce risk of ground frost; Morning mists for "noble rot"			sand < 2mm gravel > 2mm Relative proportion - water holding capacity and availability - soil temperature
91. Disadvantages of promixity to	Increase humidity, therefore, risk of fungal disease, e.g. downy mildew			- availability of nutrients
bodies of water	Create cooling mists and fogs	101	Heavy soils	High clay or silt content Hold more water
currents	e.g. Pacific Ocean current off California; Humbolt current off Chile	102	Lighter soils	More sand and gravel More free-draining
	Warm up the climate e.g. Gulf stream on west coast of UK	103	Advantages of clay soils	More moisture More nutrients (negative charge)

104. Disadvantages of clay soils	Take longer to heat up in spring and tend to be colder all year round (coz water); Swell when they absorb water and shrink when dry leading to cracking and water loss; Sticky when wet; Wet clay soils' structure deteriorates when worked	113. Soil structure	Way soil forms lumps or crumbs Affects availability of water, air & nutrients Influenced by - organic matter - earthworms and other soil organisms - wetting and drying - freezing and thawing - pressure of plant roots
105. Loam	Balanced mixture of clay, silt and sand Both nutrient holding abilities of clay and good drainage of sand		- cultivation and othe soil management practices - texture - drainage
106. Soil types	Limestone Chalk	~ 1 11	- compaction (tractors)
	Slate Granite	114. Good soil structure	Stable crumbs of 1-5 mm in diameter 3-10% organic matter
	Volcanic rocks	115. Effects of	Capping or crusting (hardened soil surface)
107. Limestone	Sedimentary rock from deposition of shells & skeletons of marine life; mainly calcium carbonate; alkaline & free draining	poor soil structure	Puddling (rain water stays on surface) Sieving (clay forms lower layer to block drainage)
	e.g. central and eastern Loire, Piedmont, N Spain, Burgundy, Limestone Coast Zone in S Australia	116. Organic content (humus)	Plant & animal remains Sugars, starches, cellulose, nitrogenous compounds Lignin and mineral matter
	Limestone-rich soils inhibits uptake of iron & other micronutrients (risk of chlorosis)	117. Soil organisms	Break down sugars, startches, nitrogenous compands and some cellulose by
108. Chalk	Lower density than limestone; better drainage	un Unming	"mineralisation"
	e.g. Champagne, Jerez	118. Humus	maintain coil structure, rateing patrients.
109. Other sedimentary rocks	Other sedimentary rocksDolomite - similar to limestone but with high level of magnesium Sandstone - compressed sand and quartz Shale - soft claySlateShale that has been altered by high pressures and temperature; harder and less		holds water; low plasticity and cohesion for easier soil management; gradual release of nutrients as humus slowly mineralised; darken colour to retain heat
110. Slate			Stop cells wilting Provide nutrients Main factor affecting vine growth
	porous than shale; heat retention e.g. Mosel	121. Water-	Soil structure and humus content
111. Granite	Igneous rock from solidified magma from volcanoes; extremely hard and desnse but free-draining	holding capacity of soil	
	e.g. Baden, N Rhone, Beaujolais	122. Soil	Aid aerobic and suppress anaerobic organisms
112. Volcanic rocks	Volcanic rocks Lava on surface	aeration	Provide oxygen to roots (respiration & growth)
		123. Soil compaction	Caused by tractors Lead to poor rain infiltration (erosion) Reduce drainage, aeration & root penetration

124. Effects of poor drainage	s of poorCooler soil, longer to heat up in springageRestrict root growthReduce bearing capacity of soil, causing problems when machinery passes	130. Growth cycle of the vine	Budburst - April/May (Sep/Oct) Shoot growth - May/Aug (Oct/Jan) Flowering and fruit set - Jun/Jul (Nov/Dec)
125. Macronutrients	N - plant cells, nucleic acids, chlorophyll and hormones; second to water for plant growth P - energy fixation, root growth, ripening		Berry growth & veraison - Jul/Sep (Dec/Feb) Wood ripening - Sep/Nov (Feb/Apr) Berry ripening - Sep/Nov (Feb/May) Winter dormancy - Nov/Jan (May/Jul)
	ripening Ca - regulate cell acidity, cell walls S - amino acids and enzymes	131. Veraison	Berry skins change colour - translucent for white varities - red for black varieties
	Mg - chlorophyll, regulate acidity, sugar metabolism, ripening	132. Most important	Floral initiation (depend on temp and
126. Micronutrients	MicronutrientsBoron Manganese Copper Iron MolybdenumZinc Cobalt Chorine Silicon	growth cycle	Budburst (affected by spring frosts) Flowering (temp, affected by rain) Fruit set (coulure = failure of berries to set) Shoot growth (in balance with yield) Berry ripening (sugar/physiological ripening)
		133. Life cycle of the	Yr 1-3 Trunk/Wood (Vegetable growth/drop fruit)
P27. Soil acidity Affect nutrient availability & organisms pH scale 4 - 6.9 (acid) 7 (neutral) 7.1 - 8.5 (alkaline)		Yr 3-4 1st Crop (good fruit to leave balance) Yr 7-20 Wood thicken (vigorous vine/high yield) Yr 20+ Yield decline (vielles vignes, alt Reben)	
	Soils become more acidic with cultivation	134. Criteria for vine selection	Adaptation to the climate: cold, short growing season, drought etc
128. Effect of high soil acidity	pH 5 Aluminum poisons the plant		Resistance to disease: phylloxera,
129. Parts of the vine	Roots - absorb water and nutrients, anchor vine, store carbohydrates Trunk/arms - transport water, store carbohydrates Shoots - support leaves		nematodes, mildews, oidium, botrytis Adaptation to the soil conditions: lime, drought, acidity, salt (most important for rootstocks)
	Nodes - from where leaves, flowers and tendrils grow Buds - prompt, latent/dormant Leaves - photosynthesis, transpiration Petioles - leaf stalks (petiole analysis for nutrients) Flowers - reproduction, hermaphroditic, inflorescences Tendrils - "fingers" that hold on to trellis wires Berries - attract birds		Economic characteristics: high yield, high quality, suitablity for mechanisation
		135. Hybridisation	Interspecific - Vitis vinifera with Vitis riparia, Vitis labrusca and Vitis aestivalis - Concord, Black Hamburg, Clinton Reasons for hybridisation - Phylloxera & Downy Mildew (Plasmopara viticola) - winter cold resistance EU laws prohibits hybrids in QWPSR

 136. Crosses 137. Mass selection (Selection 	Intraspecific - Alicante Bouschet = Aramon x Teinturier - Muller-Thurgau = Riesling x Madeleine Royale - Scheurebe, Kerner, Reichensteiner Marking the best vines at harvest from which to take cuttings	144. Grafting methods	Field grafting Bench grafting (in nursery) - Whip (by hand) - Omega (by machine) Top grafting - chip-budding - T-budding
Massale) 138. Clonal selection	Best performed during poor vintages Vines taken from one parent (genetically identical) Criteria - yield, fertility, berry size, sugar, acidity, colour, flavour, aroma, disease, drought, virus free, ease of grafting, cost	145. Vitis vinifera	 - ciert-granning Vitis vinifera sativa - cultivated vine - 5 to 10,000 wine-producing varieties - hermaphroditic Vitis vinifera silvestris - wild European vines - not usually hermaphrodite - killed by phylloxera
139. Disadvantages of clonal selection	Spread of disease Limited to certain regions Limited to certain styles Overproduction Reduction in vine genetic resources	146. Vitis labrusca	 NE US strongly flavoured, dark berries foxy aroma common parent in American hybrids, e.g. Concord
140. Genetic modification	Transfer or modification of genes Could help with disease	147. Vitis riparia	not often used as parent for rootstockriver banks and alluvial soil
141. Layering	Canes are buried in the ground and then separated from the parent plant once they have established their own roots Vitis berlandieri and rotundifolia		 Central-eastern N America rootstock low in vigour and surface rooting encourage early ripening phylloxera resistance iron deficiency (chlorosis) in chalky soils
	free soils	148. Vitis rupestris	 light soils in southern centre of US rootstock vigorous, deep rooting phylloxera resistance not very susceptible to chlorosis for poor soils with limited water availability
142. Cuttings	Pieces of parent plant develop into new plants Hardwood winter cuttings from canes (carbohydrates) Cuttings 30-45 cm in length		
	Stored at 5 C prior to grafting Heat treated at 50 C for 30 mins (pests, virus)	149. Vitis - chalky slopes in S US and Mexico berlandieri - vigorous, deep rooting - high resistance to chlorosis	- chalky slopes in S US and Mexico - vigorous, deep rooting - high resistance to chlorosis
143. Grafting	Vinifera scion grafted onto American rootstock Purpose - Phylloxera, Nematodes - soil conditions (lime) - high or low vigour - change varieties (top or head-grafting)		 often hybridised with riparia and rupestris lime-resistant rootstocks

150. Reasons for using rootstocks	Reasons for using rootstocksPhylloxera vastatrx - 1863 Europe - 2/3 of vineyards destroyed 	154. Rupestris du Lot	Vitis rupestris Vigour +++++ Deep, poor, healthy soil Low lime tolerance Drought +++ Phylloxera ++++ Nematodes +++ High vigour Mediterranean rootstock Sensitive to coulure and compact soils
		155. AXR1 (=ARG1)	Vinifera x rupestris Vigour ++++ Versatile soil High lime tolerance Drought +++ Phylloxera + Nematodes ++ Easy to graft, yields high quality fruit with good yields, but limited tolerance to phylloxera
- ripan - low v densit - high yieldin - vigo in dry - weal soils Encou		156. 3309 C (Couderc)	Riparia x rupestris Vigour +++ Cool, fertile, permeable soil Low lime tolerance Drought + Phylloxera ++++ Nematodes ++++ Fruits well France, Germany, Switzerland Acid soils
151. Symptoms of phylloxera infestation		157. 101-14 (Millardet et de Grasset)	Riparia x rupestris Vigour ++ Cool, fertile, damp soil Low lime tolerance Drought + Phylloxera ++++ Nematodes +++ Suitable for production of quality wines
152. Remedies for phylloxera		158. Schwarzman	Riparia x rupestris Vigour ++ Deep, moist soil Low lime tolerance Drought + Phylloxera ++++ Nematodes +++++ Ideal in areas with serious nematode problems
153. Riparia Glorie de Montpellier	Vitis riparia Vigour + Humid, cool fertile soil Low lime tolerance Drought + Phylloxera +++++ Nematodes +++ Suitable for production of quality wines Sensitive to compact soils Prefer moist soils		

159. 161-49C (Couderc)	49C (Couderc) Riparia x berlandieri Vigour ++ Cool, fertile, permeable soil High lime tolerance Drought + Phylloxera ++++ Nematodes ++ France, Germany, Switzerland Good fruiting Good for acid soils A (Millardet et de sset)Riparia x berlandieri Vigour ++ Cool, deep, rich, permeable soil Medium lime tolerance Drought + Phylloxera +++++ Nematodes +++	164. 125AA (Kober)	Riparia x berlandieri Vigour ++++ Very wide range of soil Medium lime tolerance Drought +++ Phylloxera ++++ Nematodes +++ Not for varieties sensitive to coulure
160. 420A (Millardet et de		165. 99R (Richter)	Berlandieri x rupestris Vigour +++++ Average fertility, deep, permeable soil
Grasset)			Medium lime tolerance Drought +++ Phylloxera ++++ Nematodes ++++ Fruits well S France
161. 5C (Teleki)	Good for quality vineyards Riparia x berlandieri Vigour +++ Wide range: chalky clay, compact Medium lime tolerance Drought + Phylloxera ++++ Nematodes ++++ Suitable for quality vineyards in	166. 110R (Richter)	Berlandieri x rupestris Vigour +++++ Deep, poor clay-calcareous Medium lime tolerance Drought ++++ Phylloxera ++++ Nematodes +++ Good rootstock for dry regions Poor uptake of K and Manganese
	northern regions Poor K uptake	167. 140 RU (Ruggieri)	Berlandieri x rupestris Vigour +++++
162. 5BB (Teleki Selection Kober)	Riparia x berlandieri Vigour +++ Wide range: cold, fertile, permeable Medium lime tolerance Drought ++ Phylloxera ++++ Nematodes ++++ If fertile soil, avoid varieties sensitive to coulure Poor uptake of K and Mg		Poor, dry soil High lime tolerance Drought ++++ Phylloxera ++++ Nematodes +++ Suitable for Mediterranean countries
		168. 1103 P (Paulsen)	Berlandieri x rupestris Vigour +++++ Poor, dry, average compactness Medium lime tolerance
163. SO4 Selection Oppenheim	SO4 SelectionRiparia x berlandieriOppenheimVigour +++Fertile, humid, cold soilMedium lime toleranceDrought +Phylloxera ++++Nematodes ++Very fruitfulEuropePoor uptake of K		Drought ++++ Phylloxera ++++ Nematodes +++ Warm climate rootstock Saline resistant
		169. Fercal	Berlandieri x vinifera Vigour +++ Dry, shallow, calcareous soil Very high lime tolerance Drought ++++ Phylloxera +++ Nematodes +++ Mg deficiency if K applications are too great

170. 41B (Millardet et de Grasset)	Berlandieri x vinifera Vigour +++ Dry, calcareous soil High lime tolerance Drought +++ Phylloxera ++ Nematodes ++ Champagne and Charentes Some susceptibility to phylloxera Good fruiting Good uptake of Mg	176. Site selection - sunlight consideration	1250 hours required Factors - topography - latitude - season - time of day - cloud over - slope - trellis design - row orientation - canopy management
171. 333EM (Ecole de Montpellier)	Berlandieri x vinifera Vigour +++ Humid, compact soil High lime tolerance Drought ++++ Phylloxera ++++ Nematodes ++	177. Site selection - nutrients	Macro- and micronutrients Nutrient deficient soils - sandy soil in high rainfall areas (K, Ca, S) - shallow soils in low rainfall areas (N)
172. Dog Ridge	Champagne, Charentes, Midi Can cause coulure Vitis Champini Vigour +++++	178. Site selection - practical and commercial factors	Access (cars, tractors, electricity, water) Availability of Labour Proximity to markets Vinevards in the vicinity
V P L C P N N F L S S V	Poor, light-textured soil Low lime tolerance Drought ++ Phylloxera ++ Nematodes +++++ For serious nematode problems Lower quality potential than Schwarzman Weak phylloxera tolerance	179. Selecting the right variety	8000 grapes, 1000 important Clonal differences Critieria - genetic characteristics - performance in site climate (sugar, acid, pigments, tannin, fruit favors) - winemaking influence - fashion
173. Key environmental factors for site selection	Water availability Regional climate (temp & sunshine hour) Soil type and quality		- vegetative & reproductive cycles - yields - disease - legislation
	Access to the site Availability of labour and resources Proximity to market	180. Vineyard design - planting density	1 hectare (100m x 100m) : 2.47 acres # rows x # vines/row high density not = high quality
174. Site selection - water consideration	Amount, timing, quality High rainfall - rain shadows Moderate to low rainfall - rivers or streams		balance between root and canopy - vigour - planting density - soil fertility - training
175. Site selection - heat consideration	Sufficient, not excessive Too cool - phenological, yield, ripening Too hot - shading, uneven veraison, low sugar		 poor soil -> high density low water -> low density fertile soil -> low density row alleys not < heights of row canopy 15 shoots per metre wider alleys -> greater plant distance

 181. Vineyard design row orientation 182. What is a trellis? 	Influenced by - shape of the field - direction of the slope - prevailing wind Cool climates: N-S direction Sauvignon Blanc: E-W direction (pyrazine) A physical structure, consisting of posts and wines that largely supports the	186. Staked vines	Cote Rotie, S France, Spain, Portugal, Italy, California, S Africa Post to support vine Trained higher than bush Trained to form a crown (head) 20-30 cm above the ground Spur-pruned without a crown Pros: air circulation -> less disease
	grapevine framework (canes, shoots, foliage)	187. Single wire	Cons: low yield, not for high vigor sites
	Simple: low vigor, low potential site	C C	Head trained and cane pruned
	Complex: high vigor sites, disease control		Pros: continuous foliage, inexpensive Cons: new shoots hang down -> sunburn
183. What factors affect the choice	What factorsLegislationaffect the choiceGeographical features of siteof a trellis- topographysystem?- wind- rainfall- temperature- frost risk (higher trellis at bottom of slope)- soil fertilityEffectiveness of light interception Cost/time (establishment and maintenance)Mechanical potential Popularity and attractiveness	188. Two-wire, vertical	California in mid-1980s
of a trellis system?			Most basic form of multi-wired trellis system Single fruiting wire, single foliage wire above
			Pros: mechanical pruning and harvesting
		189. Vertical shoot position (VSP)	France, Germany, cooler regions of Austalia and NZ Places with high risk of fungal diseases Non-divided canopy Moyable foliage wires
184. Types of trellis systems	Types of trellisUntrellisedsystemsStaked vinesSingle wireTwo-wire, verticalTwo-wire, verticalVertical shoot positioning (VSP)Vertical, dividedMulti-wire, horizontalGeneva double curtain trellis (GDC)U-shaped or lyrePergod/tendonePergod/tendone		Cane-pruned (guyot) Spur-pruned (unilateral/bilateral cordons) Pros: mechanical operations & harvest Cons: high shoot density, not for high vigor varieties and high potential sites
		190. Vertical, divided	Scott-Henry (cane-pruned) Smart-Dyson or Ballerina (cordon-trained)
185. Untrellised	S Europe		higher wire: upwards
	bush (trunk trained short) no trellis spur-pruned (bush vines or gobelets) cane-pruned (basket; Santorini, Greece)		lower wire: downwards 2 m tall, row spacing > 2 m
			Pros: 60% more canopy; halved shoot density; de-vigorating effect (downward shoots)
	Pros: low cost Cons: low yields disease manual		Cons: high establishment costs; expertise
	cons. fow yreas, ascase, manual	191. Multi-wired, horizontal	Geneva Double Curtain U-shaped or lyre Overhead pergola system

 192. Geneva double curtain trellis (GDC) 193. U-shaped or 	Australia, California, parts of Italy Improve yield and fruit composition in vigorous soil Shoot de-vigorating effect (downward shoots) Higher yields of better quality grapes Spur pruned, harvested by machine Pros: 50% yield increase over VSP Cons: high establishment costs, expertise France, California, NZ, cool regions of	198. Plastic mulching	Pros - young vines suffer less drought - less weed competition - better soil structure - higher soil temp for microbial activity Cons - cost & labour - frost risk - weeds - slugs mice snakes
lyre trellis	Australia, Chile and Uruguay Medium to high vigor sites Improved yield and grape quality Machine operations Cons: high cost of construction/maintenance		 - removal & disposal - superficial rooting Alternative - tree guards (grow tubes/polythene sleeves)
194. Pergola/tendone trellis	Chile, Agentina, Italy Table grapes 2m high trunks Cane or spur pruned Cons: high cost of construction/maintenance; not for high potential sites; shading problems (powdery mildew, botrytis)	199. Care of young plants	Watering Weed control Rabbits (plastic netted sleeves) Slugs and snails (slug pellets) Wind protection (temporary windbreaks) Disease (powdery mildew) Tying up and summer pruning Replacing unsuccessful vines
195. Site preparation and planting	 Yr 1 - Summer remove existing vegetation (optional) windbreaks, leveling, terracing, sub-soiling, drainage, soil disinfection Yr 1 - Autumn corrective fertilisation deep ploughing Yr 2 - Spring deep cultivation tracing out the plantation planting 	200. Why pruning and training?	Un-pruned vines - irregular yields - high-acid, low-sugar berries Pruning and training to increase yield/quality - balance between fruit and leaf - ideal canopy (15 shoots/m; 1-1.5 leave thick) - shoot about pencil thick, 12-15 nodes long - appropriate crop size - trellis to capture max sunlight - avoid leave bunching/disease risk
196. How to improve drainage?	Manure Ditches Drainage pipes Mole draining Sub-soiling		 uniform bunch ripening allow mechanical spraying and harvesting young vines pruned lightly with flower removed older vines pruned lightly to raise
terracing needed?	Stope over 20 degrees	201. Vine's vigor	crop Weight of wood produced in a year

 202. How many buds to leave on vine at winter pruning (the charge)? 203. What is canopy management? 	Count # of ideal shoots in previous season Remove and weight canes, then divide by 30-40 Young vines < 8 yr = more buds Old vines 5-15% more buds Organisation of the shoots, leaves and fruit of the grapevine to maximise the quality of the microclimate of the leaves and fruit to	206. Steps in canopy management	Diagnosis of canopy - leaf layer # - % exposed grape clusters - leaf size/colour - # of lateral shoots - % actively growing shoot tips Site assessment - soil profile - water supply
	improve quality and yield and to minimise disease risk. Where is it importance?	207. How does site potential affect canopy management?	 soil fertility High >1m deep, fertile, good water, high nutrient
204. Main aims of canopy management	 New World: high vine vigor in fertile soils Max light interception large canopy surface early development of canopy in spring avoid inter-row shading (1:1 height:alley width) Min canopy shading shaded leaves use, rather than produce energy Dr Richard Smart: vegetative cycle 	g	 low density (< 3000 plants/ha) complex trellis (Ruakura twin two tier, GDC) Medium 0.5-1m deep, adequate water, avg fertility avg density (3000-5000) lyre, Scott-Henry, large VSP Low < 0.5m deep, poor water, low
	Uniform microclimate for fruit Balance between fruit and leaf	208. How does vine vigours	- high-density (>5000) - VSP, single or double guyot Low vigour
	Min disease Mechanization (pruning, pesticide, harvesting)	affect canopy management?	 drought stress (irrigation where legal) low soil fertility (fertilisation) disease (diagnosis and
205. Vegetative Cycle vs Balanced Cycle	Vegetative cycle - sheds depresses berry growth - fruit weight is reduced - shoot growth stimulated -> imbalance - canopy gets thicker -> more shading Balanced cycle - light stimulates berry growth - fruit weight is increased - shoot growth depressed -> balance - canopy decreases -> min shading		treatment) High vigour (more difficult to control) - low vigour rootstocks - water stress - cover cropping - high density planting (low potential sites) - removing alternatie vines - root pruning - complex trellis
			 pinching (shoot removal) -> lateral shoots shoot positioning, trimming, leaf striping, crop thinning or green harvesting

209. Winter pruning (2nd most expensive process)	Minimal (zero) pruning - table grapes Replacement cane (guyot) - cane-pruned system with 1 or more spurs - single guyot: 1 spur/1 cane - double guyot: 2 spurs/2 canes - determined by vigour or laws - limit carbonhydrate reserves to control vigour - skills required, manual - buds at end of canes break first, more vigorous - canes tied down in an arch (pendelbogen) Condon/spur pruning - "head pruned" or bush	211. Summer Training	Trimming (July/Feb) - hand or machine - control shoot growth - reduce canopy - aid ripening Shoot positioning - shoot removal - bud-rubbing (removal of unwanted shoots) - tucking in (shoots in between foliage wires) - 15 shoots/m of trellis Leaf stripping - around fruit zone - between veraison and harvest Green harvesting - removal of bunches - alter leaf to fruit ratio - done at veraison
	- single cordon with vertically positioned shoots	212. Why soil management?	To provide an ideal environment for root development
	 Te Kauwhata two tier Cordon de Royal, Sylvoz, Lenz-Moser, GDC easier to prune, pre-pruned by machine more vigorous 	213. Ideal soil condition	Loam texture Stable crumb structure Sufficient water Good drainage and aeration High microbial/macrobial activity
210. Other factors when pruning	Affect timing of bud break - early: spring frost	214. Vineyard nutrition	pH 6.0 - 7.5 Sufficient nutrients Sufficient depth and volume
	 rate: fipering Pruning wounds over 30 mm will not heal properly Dispose pruning wood 		Losses - uptake by vine - removal of crop - leaching - erosion - rain
	Disease - botrytis - powdery mildew - phomopsis - virus		Gain - return of leaves and pruning waste - fixation of nitrogen from the air
		215. What are macronutrients?	N, K, P, Ca, Mg, S
	- tungus/eutypa	216. What are micronutrients?	Fe, Mn, Mo, Cu, Zn, B

217. What are the effects of nutrient deficiencies?	Vine health Growth Yield Quality Chlorosis - lack of Fe, Cu, Mg, S Affects shape and color of	 224. Advantages of weeds 225. Weed control 	Prevent soil erosion Prevent nitrate leaching Encourage biodiversity Reduce excess vine vigour Improve soil structure Warn of disease, nutrient deficiencies, etc Cultivation
218. Soil analysis	leaves Before planting Every 2-3 years Determine ant of fertiliser	methods	Herbicides Mulching Animals Flame weeding
219. Petiole and leaf analysis	to be added Confirm visual symptoms	226. Cultivation	Autumn: ridge up Spring: de-ridge Summer: 2 times Never when wet Best when roots are active Pros - effective - efficient
	Assess effectiveness - fertilizers - irrigation - weed control - does not tell how much fertilizer to add		
220. Use of fertilizers	Correct soil deficiencies Lower acidity (raise pH above 6)		Cons - breakdown soil structure - uneconomic
221. What nutrients to add?	Spring: N Autumn: P & K	227. Ground cover	Ideal cover crop is quick to establish Natural vegetation difficult to manage
222. Organic fertilizers	Fresh or composted plant or animal material Cheap High in humus Good for soil structure and water retention Encourage soil organisms & aeration Slow-release Bulk & expensive to transport and spread Main formats		 and harbors pests Pros good for soil structure control vine vigor encourage deep rooting prevent erosion Cons less vine vigor humidity spring frosts
	 slurry or cereal straws green manure foliar fertilizers Cover crop white mustard prevent water run off & erosion weed control, bind nutrients Leguminous crop vetch (nitrogen) 		
223. Disadvantages of weeds	Compete for water & nutrients Increase frost risk Host for pests and diseases		

228. Herbicides	No-till cultivation	233. Fixed and traveling	Effective for large vineyards
	Pre-emergence herbicides - poorly soluble/trapped in soil	spi liikiei s	Frost control Induce noble rot
	- before budbreak		
	Contact herbicides		Cons
	- whers/knockdown		- waste water - fungal disease
	- after bud burst		- labour intensive (traveling
	Systemic herbicides		sprinklers)
	- absorbed by leaves	224 Under-canony systems	Cood water coverage
	- kill entire plant	204. Onder canopy systems	Good water coverage
	- after leaf fall		Cons
	D		- high level of management
	Pros		- blockages
	- less manpower - effective	235. Drip systems	Better control of water supply
	- reduce spring frost		Save water
	Cons		
	- expensive		Cons
	- toxic		- expensive
	- decrease micro-organisms		- constant monitoring
229. Mulching	- environmental concerns Suppresses weeds	236. Regulated deficit irrigation (RDI)	Use water stress to control vegetative growth
	Prevent light from reaching weed		
			Cons high management skills
	Pros		- mgn management skins
	- conserve water		content
	- improve soil structure		- not for hot regions
	- reduce erosion	237 Partial rootzone drving	Control vine vigour
		(PRD)	Maintain wine quality
	Cons		
	- expensive		Cons
	- superficial rooting		- high management skills
	- most msks		- accurate monitoring of soil
	- pest intestation		water content
230. Choice of irrigation	Soil texture	238. Viruses	Genetic material surrounded by
	Stope		a protein coat
	Labor		- fanleaf virus
	Automation		- corky bark
	Frost protection		- stem pitting
	Water supply	220 Phytonlasmas	Small bacteria without cell walls
	Salinity		- flavescence doree
	Water quality		- grapevine yellows
231. Irrigation systems	Flood	240 Bacteria	cell wall but no chlorophyll
	Sprinkler	240. Ducteria	- crown-gall
	Under-canopy		- bacterial vine necrosis
	Dup Regulated deficit irrigation (RDI)		- pierce's disease
	Partial rootzone drving (PRD)		
232. Flood irrigation	Lots of water required		
	Desert areas for bulk wine production		
	Agentina		

241. Fungi	no carbohydrate cell wall, no chlorophyll - powdery mildew - downy mildew - botrytis - phomopsis - black rot - eutypa	248. Downy mildew 249. Grey Rot	 Fungi - Plasmopara viticola Peronospera (DP) Attacks green shoots & leaves Leaves: yellow oil spots, white downy patches Lives in the tissue (not on surface) Flowers dry up and drop off Berries go grey Needs rainfall/water and warm temp (18 C) Prevention canopy management copper salts (preentative)
242. Nematodes	un-segmented parasitic roundworms - dagger nematode - root-knot nematode Sogmented invertebrates with		
243. Ai un opous	heads - spider mites - grapevine moths - phylloxera - leafhoppers - cicadelles		- organic and systemic pesticides Fungi - Botrytis Cinerea High humidity and warm temp Enter vine through wound Attacks leaves & fruit Brown then black patches Berry infections most serious
244. Vertebrates	Animals with backbones - birds - rabbits - deer - foxes		Affect tight clusters from middle outward Preventative measures are the best - fungicides - spray at flowering, berry set, veraison
245. Weed	Plant that shouldn't be in the vineyard	250. Noble Rot	Fungi - Botrytis Cinerea Humid mornings, warm dry afternoons Proximity to a body of water Berries go lilac and shrivel Rain can turn noble rot to grey rot Thin skinned grapes - Semillon (Sauternes) - Chenin Blanc (Loire) - Sauvignon Blanc - Riesling (Germany) - Furmint (Hungary)
246. Pest management philosophies	prophylactic or prescriptive reasoned pest control (lutte raisonee) integrated pest management (IPM)		
247. Powdery mildew	Fungi - Oidium tuckerii or Unicula necator Attacks green shoots & leaves Leaves: dull grey patches, cobwebs patches Musty smelling canopy Over winters in dormant buds Spread by wind 21 - 25 C, rain not required - warm, cloudy summers Killed by sunlight or temperature		
		251. Eutypa dieback	Dead Arm or Dying Arm Fungi: Eutypa lata Pruning wounds Mild temp and moisture Kill conducting tissue Stunted shoots, yellow cupped leaves Healthy water shoot can replace arm
	Prevention - canopy management - sulphur spray (18 - 35 C) - DNA Methytransferase Inhibitors (DMIs)		Prevention - vineyard hygiene - removal of infected wood

252. Phomopsis	Fungi: Phomopsis viticola Basal buds lose viability Infected canes whiten and snap off easily Leaf: small dark spots after rainfall Overwinters in dormant buds Introduced by infected planting material Damp vineyards, rainy, cold springs Prevention - good plant material	257. Leafrool virus	Virus Most wildspread disease Leaves turn bright red (black grapes) or yellow (white grapes) in Autumn Yields reduced by 50% Berry sugar decreases by 30% Delay maturity Spread by infected cuttings Mealybugs as vector No cure
253. Mites	 fungicides sodium arsenite (legal issues) Minute arachnids (0.2-0.5 mm) White to dark red in colour Feed on green tissues, leaves Affects photosynthesis Over winter in dormant buds 	258. Birds	Vineyards near forests Sarling, blackbirds, sparrows Some peck a hole, others take the fruit Holes lead to infection Prevention - scarers (bangers, reflectors, scarecrows) - netting (over the row, fruit zone)
254 Grane moths	Prevention - sulphur sprays - predatory mites - miticides Elving insects	259. Hazards	Winter freeze and frost Wind Hail Drought Excess rain
 254. Grape motins Flying insects Damage grape vines in la Europe pyrale, cochylis, Europe eulia California Orange Tatrix Australia and NZ light brown apple moth Feed on leaves and bunch Prevention insecticides natural enemies (spider bug) 255. Pierce's Bacteria: Xylella Fastidio Stunted shoots Death 1-5 years No cure 	Damage grape vines in laval stage Europe - pyrale, cochylis, European grape moth, eulia California - Orange Tatrix Australia and NZ - light brown apple moth Feed on leaves and bunches Prevention - insecticides - natural enemies (spiders, wasps, shield bug)	260. Winter freeze	Canada, Washington, China Prevention - multiple trunks - hilling up
		261. Spring frost	Site selection High wire training Delayed winter pruning Soil with good heat conductivity Thin polymer coat Fans/windmills Helicopters Burners Overhead sprinklers
	Bacteria: Xylella Fastidiosa Spread by glassy winged sharpshooter Leaves are stuned and slow Stunted shoots Death 1-5 years No cure	262. Wind	Loss of yield and quality Wind breaks - artificial and natural - within 10 times the height
256. Fanleaf virus	Virus Shoot growth is malformed Leaves look like fans, with yellow veins Vine fails to fruit, loss of 80% Spread by infected planting material, nematode No cure	263. Hail	Burgundy, Mendoza, Piedmont Irregular pathway Rip and strip leaves & bunches Prevention - explosive rockets - towers charged with static electricity - netting
		264. Drought	Australia Irrigation

Vegetative growth Fungal diseases Berry dilution & splitting Good soil drainage	270. Biodynamic viticulture	Rudolph Steiner Highly spiritual and intangible Holistic approach Cosmic relationship Life forces Objectives - healthy living soil - balanced vines - harmony with nature
Conventional agrochemicals Integrated viticulture (lutte raisonee) Organic viticulture Biodynamic viticulture		
New agrochemicals - fungicides, insecticides, pesticides, etc. - fertilisers - used after 1950s - withholding period - maximam residual levels (MRL)		Biodynamic preparations - horn manure (500) - horn silica (501) - herbal & plant preparations (502- 507)
Conventional - copper and sulphur - manure	271. Grape berry - anatomy	Skin (epidermis) - thin waxy layer (cuticle) Pulp
 Integrated International Organisation for viticulture (lutte Biological Control (IOBC) Integrated Pest Management (IPM) France, Switzerland, S Germany Reduce degration Certification Economic viability reduce chemical inputs green cover mowing of cover crop rootstocks 		 - vacuoles (contains juice, sweet when ripe) - peripheral pulp (pigments, tannins, flavor) - intermediate pulp (low tannins & flavor) - central pulp (surrounds the seeds) Seeds - embryo and albumen - high level of tannins
 - canopy management - avoid water pollution - natural predatory pests - monitor 	272. Grape berry - constituents	Water (80%) Sugars and other carbohydrates (20%)
269. Organic viticultureAgentina, ustralia, Chile, Germany, France, Austria, California, Italy, Spain Coexist with natural systems Enhance biological cycles IFOAM guidelines - record all inputs - 3-year plan for a sustainable system Optimum soil structure & fertility - regular input of organic residues - micro-organisms - cover crops - appropriate cultivation - composting - suppress weed, not eliminate - no synthetic herbicides or pesticides		 pectins (high in aromatic grapes) broken down by pectolytic enzymes Acids (1%) tartaric & malic citric, ascorbic, acetic Phenolic compounds (0.1%) colour, texture, astringency, bitterness smaller phenolics (catechins, epicatechins) anthocyanins (peripheral pulp) tannins favor compounds Mineral salts (K, Ca)
	Vegetative growth Fungal diseases Berry dilution & splitting Good soil drainage Conventional agrochemicals Integrated viticulture (lutte raisonee) Organic viticulture Biodynamic viticulture New agrochemicals - fungicides, insecticides, pesticides, etc. - fertilisers - used after 1950S - withholding period - maximam residual levels (MRL) Conventional - copper and sulphur - manure International Organisation for Biological Control (IOBC) Integrated Pest Management (IPM) France, Switzerland, S Germany Reduce degration Certification Economic viability - reduce chemical inputs - green cover - mowing of cover crop - rootstocks - canopy management - avoid water pollution - natural predatory pests - monitor Agentina, ustralia, Chile, Germany, France, Austria, California, Italy, Spain Coexist with natural systems Enhance biological cycles IFOAM guidelines - record all inputs - 3-year plan for a sustainable system Optimum soil structure & fertility - regular input of organic residues - micro-organisms - cover crops - appropriate cultivation - composting - suppress weed, not eliminate - no synthetic herbicides or pesticides	Vegetative growth Fungal diseases Berry dilution & splitting270 Biodynamic viticulture biodynamic viticulture (lutte raisonee) Organic viticulture Biodynamic viticulture Biodynamic viticulture270 Biodynamic viticultureNew agrochemicals Integrated viticulture Biodynamic viticulture

- Bordeaux mixture & sulphur allowed

273. What are the factors affecting the chemical composition of grapes?	Grape variety or cultivar Environment (terror) Viticulture Season/weather
274. Ripening process - 4 stages	Herbaceous phase (vegetative period) - formation of berry till version - small, hard and green berries - acidic taste
	Veraison - a few days - beginning of berry ripening - change color - berry stops photosynthesizing
	Maturation (accumulation phase) - 40-60 days - grapes swell - sugar increases, acidity decreases - berry gains fruity flavours - softening of berry - rapid increase in glucose and fructose - increase in phenolics
	Sur-maturation - over-ripe - fruit shrivels - sweet wines