

WSET Level 4 Diploma Unit 2 - Maturation, Treatments and

Bottling

Study online at quizlet.com/_48i86

1. Maturation	Post fermentation to consumption
	Whites: 2-6 months Oak mature Chardonnay: 12+ months Light reds: 1-3 months Full bodied reds: 2-3 years
	Oak aging allows slow oxygenation - colour - tannin polymerisation - stabilisation
	Chemical reactions - temperature - humidity - exposure to oxygen
2. Effects of maturation	Reds - ruby red to deeper red or tawny - primary fruit to tertiary flavours - softer, rounder tannin texture
	Whites - more golden - richer and more complex aromas

3. Environmental condistions for maturation	Temperature - reds (10 - 20 C), optimum at 15 C - delicate whites and roses (< 10 C) - min fluctuations Humidity - optimum 75 - 85% Oxidation - free SO2 > 20 mg/l - no ullage in vessels
	 - blanket of inert gas (nitrogen, CO₂, argon) Micro-oxygenation two chamber device porous ceramic material reduce herbaceous aromas, better oak integration, better control of reductive characters, cost savings on oak
	Oxidative aging - Oloroso Sherry, tawny Port, Ruthegien liqueur Muscat - nutty, dried fruits and savoury notes
	Biological aging (flor) - fino sherry, vin jaune (Jura) - yeasty aroma and flavour
	Lees - MLF, batonnage - softer, richer, more complex wine - off-flavours: H2S, mercaptan odours (cabbage-like)
	Inert gases - reduce oxidation; prevent spoilage - nitrogen (less soluble, sparge wine to remove oxygen, SO2, red wine) - CO2 (denser than nitrogen, more soluble, flushing, blanket, white wine) - argon (expensive)
4. Oak vessels	225 l barriques (quality red) 228 l Pieces (white) 300 l hogsheads (quality red) 500 l puncheons 20 hl, 50 hl, 100 hl casks in Europe
5. Barrel maturation	Clarification and stabilisation Deepen and stabilise colour MLF Complexity of flavours Soften astringency in reds and whites

6. 3 types of oak in winemaking	American white oak - winemakers in Spain, Americas, Australia - Oregon, Minnesota, Wisconsin - Auercus alba: low phenols, high aromatics, particularly methy-octalactones (coconut) - Rioja, Australian Shiraz, warm-climate Cabs
	European white oak - highest quality - expensive - French, Hungarian, Russian, Slavonian, Portuguese
	Quercus petraea (Quercus sessilliflora) - tight grains, less extractable tannins, aromatic (lactones, volatile phenols - eugenol (cloves), phenol aldehydes - vanillin (oaky and vanilla odours) - Troncais, Allier, Nievre, Vosges (tight-grained wood)
	Quercus robur - low aromatics, high extractable polyphenols - Limousin (looser-grained, more tannic wood)
7. Barrel-making process	Cutting - sawing vs splitting logs - European oak has to be cut or split along oak grain - American oak: less porous, can be sawn, max yield
	Drying - air vs kiln - less aggressively tannic in air-dried wood - French oak traditionally air-dired (18-36 months)
	Assembling - use heat to bend the wood - fire vs steam
	Shaping and toasting - shaped by heat - toasting produces aromatics
	Heads
	Finishing - tested for leaks - bung hole, metal or chestnut hoops
8. Toasting barrels	Level of toast - heat of the fire - length of time
	Light> Medium> Heavy - the lighter the toast, the more "oaky" or "woody" - the heavier the toast, the more "spicy" and "toasty"
9. Barrel size	Gonchihordo - 136 litres Fuder - 1000 litres Stuck - 1200 litres Bordeaux barrique: 225 litres Burgundy pieces - 228 litres
	The smaller the barrels, the larger the surface area of wood contact to accelerate maturation

10. Barrel age	New: woody flavours Replaced after 3rd or 4th use Saved and re-charred for 10 more years
11. Barrel maintenance and hygiene	Check for leaks Store wine at 18-24 C (MLF) or 10-18 C (maturing), 75% humidity Cleaning with water under high pressure or steam Storing empty barrels (rinsed, dried, SO2, bunged up)
12. Oak alternatives	Oak chips (6.35 mm to 2 cm) Inner staves Barrel inserts Toasted oak powder (legal issues) Stainless steel tanks (aromatic wines, reduction problems) Cement tanks (lined by epoxy resin or glass) Fibre-glass or resin tanks Bottle aging
13. Blending	Objectives - style - standardization - balance & complexity - hide faults Between fermentation and bottling Stabilized before bottling The final wine should always be better than its components
14. Components of a blend	Wines of different quality> large volume brand Different vintages for consistency (Champagne, Sherry) Different grapes e.g. Cabernet Sauvignon + Merlot Different barrels or wines subject to different vinification processes (MLF + non-MLF; press + free-run; different yeasts)
15. Examples of blends	Champagne (Pinot Noir, Pinot Meunier, Chardonnay) Bordeaux reds (Cabernet Sauvignon, Cabernet Franc, Merlot, Petit Verdot, Malbec) Jacob's Creek Shiraz-Cabernet Sherry (fractional blending, solera system) European table wine (cheap wine from France, Italy, Spain)
16. Clarification	Remove "unwanted" suspended particles to make the wine clear Suspended particles - dead yeasts - grape skins, stems, seeds and pulp - bacteria - tartrates - colloids (large organic molecules, polysaccharides, tannins, phenolics, pigmented tannins, heat unstable proteins) Methods - sedimentation and racking - fining - filtration - centrifugation - floatation

17.	Sedimentation	Speed of sedimentation - density of particles - viscosity of wine - temperature - convection Advantages - gentle, natural process - minimal equipment (hose and pump) Disadvantages - slow - several stages - volume of lees
18.	Racking	Gross lees are usually racked off after fermentation White in tank: every 2 months Red in barrel: every 3-4 months Check SO2 "Top off" or blanket with inert gases to avoid oxidation CO2 not used coz soluble
19.	Centrigugation	Very high speeds (10,000 rpm) High flow-rate Expensive Advantages - rapid - removal of dense particles Disadvantages - expensive - noise - oxidation
20.	Fining	Addition of an agent to remove something Usually added after fermentation and one or two rackings Fining agents - natural or synthetic - electrostatically charged Colloids ve (tannins, pectins, dextrans, glucans) - +ve (coloured pigments, proteins) - 2 - 1000 nm (too small for filtration) - cause cloudiness or deposit Effects of fining - remove colloids and stabilize wine - clarify wine - change appearance, aroma and flavour
21.	Fining agents	Bentonite (-ve) Gelatin (+ve) Casein (+ve) Isinglass (+ve) PVPP (Polyvinylpolypyrrolidone) (+ve) Carbon (charcoal) Silica sol (-ve) Tannin (-ve) Egg albumen (+ve)

22.	Bentonite	Montmorillonite clay, swells in water Strong -ve charge Reduce enzymes (oxidases), vitamins, amino acids Increase microbial and heat stability of wine Non-selective (reduce flavour) Uses - protein stability in whites and roses - eliminate colloidal colouring matter in young red Commercial bentonites - powder or granule form - sodium bentonite
23.	Gelatin	Protein extracted from pig skins and animal bones by boiling +ve charge Odourless and colourless Remove off tastes, but reduce the "body" Best used at 16 - 25 C Uses - remove astringency and off-flavours in whites - remove harsh tannins in reds, but also reduce colour Over-fining a white wine - protein-unstable - counter-fined with tannin or silca sol
24.	Casein	Milk +ve charge Applied in conjunction with tannin Sodium or potassium caseinate Whole milk not permitted in EU Skimmed milk has better clarifying abilities Uses - white fines with excess colour or oxidative taints - reduce iron content of wine
25.	Isinglass	swim bladder of fish (sturgeon) +ve charge Uses - reduce phenolics - improve colour vibrancy and clarify of whites Disadvantages - fishy nose and palate - can clog filters - expensive - difficult to prepare
26.	PVPP	Synthetic polymer Strong +ve charge Uses - reduce bitterness and browning in whites - reduce astringency and soften tannins in reds

27. Carbon (charcoal)	Burnt animal or plant Used in conjunction with 50 mg/l ascorbic acid to prevent oxidation Uses - remove off-odours and colour - treat final pressings (low doses)
28. Silica sol	Colloidal suspension of silicon oxide -ve charge Used in association with gelatin/isinglass Uses - accelerate clarification - produce compact lees to minimize wine loss - remove gelatin - improve filterability of fined wine
29. Tannin	-ve charge Blood products not permitted in EU since 1987 Uses - stabilize new wines by precipitating excess proteins - aid fining process (in conjunction with gelatin)
30. Egg albumen	whites of chicken's eggs +ve charge Remove less colour or flavour Uses - absorb harshest, "greenest" tannins in reds - premium quality red wines
31. Filtration	Flow rate of filter - surface area - pressure - permeability - viscosity - thickness of filter Filterability index (clogging power) of a wine - percentage of solids - size of particles and their nature - MLF wine more difficult to filter
32. Filtration mechanisms	Depth filtration (adsorption) Surface filtration

33. Depth filtration (adsorption)	unwanted particles trapped in filter medium
	Earth filtration - diatomaceous earth (DE) or Kieselguh - perlite (musts and cloudy wines)
	Sheet or pad filtration - pads made of cellulose - papery taste unless rinsed with 1% citric acid
	Advantages - high solids content - simple to operate - inexpensive Disadvantages - need to control filtration rate - not absolute filtration
34. Surface filtration	simple sieving mechanism
	Membrane with uniformly-sized holes/pores - 0.65 micron (yeast) - 0.45 micron (yeast and bacteria) - 0.2 micron
	Membrane filters - sterilize wine before bottling
	Cross-flow filtration - prevent clogging - can filter dirty wines - expensive
	Ultra-filtration - cross-flow filtration - illegal in EU - can filter out individual components (tannins, sugars, acids)
	Advantages - absolute Disadvantages - flow rate decrease with volume of liquid - clogging - expensive
35. Reverse osmosis	Specialise cross-flow filtration Membrane allows only small molecules
	Uses - concentrate grape musts - de-alcoholise a finished wine - decrease high levels of acetic acid
	Advantages - efficient, quiet and automated - total inert gas blanketing and low temperature Disadvantages - expensive

36. Osmotic distillation	Specialised membrane filtration process PTFE or Telflon membrane with brine on the other side
	Uses - high quality grape juice concentration - selective removal of a single volatile, e.g. ethanol
37. Stabilisation	Prevent hazes, clouds, bubbles or deposits
	Stability tests - proteins (bentonite fining) - tartrates (chilling)
38. Wine stability	Causes of instability - aeration (e.g. bottling) - light (e.g. shop window displays) - low or high temperatures (e.g. transport or storage)
39. 3 main instability problems	Tartrate instability Oxidation and reduction Microbial spoliage
	Others: proteins, phenolics, copper, iron

40. Tartrate instability - Potassium bitartrate

Cold stabilisation prior to bottling

- chill wine to -4 (12% abv) to -8 C (fortified)
- stored in insulated tanks for up to 8 days
- expensive equipment
- results not reliable
- more dissolved oxygen at low temp

Contact process

- chill wine to 0 C and add potassium bitartrate crystals (4g/l)
- quicker, cheaper, more effective

Gum arabic (Acacia)

- colloid that prevents tartrate crystal formation
- short-lived, about 12 months
- 50 200 mg/l

Metatartaric acid

- anti-crystallising properties
- short-lived, about 12 months
- longer than gum arabic at cooler temp (10 C)
- 100 mg/l

Mannoproteins

- enzymatic hydrolysis of yeast
- soluble, no colour, flavour nor taste
- long-lasting
- 200 to 250 mg/l

Ion exchange

- not permitted in EU due to health concerns
- resin containing sodium ions
- sodium bitartrate more soluable
- alter aroma and taste

Electrodialysis

- special selective membranes
- passage of potassium, calcium and tartrates ions
- high capital cost
- low energy costs, reliable result

41. Tartrate instability - Calcium tartrate

Calcium carbonate (de-acidification) Calcium bentonite (clarification)

Highly soluble, forms crystals only very slowly

Stabillised by

- metatartaric acid
- ion exchange
- electrodialysis

42. Oxidation	Effects - change colour (brown and dull) - change aromas and flavours (sherry-like) - increase bitterness
	Factors - polyphenol oxidase & lacasse ennzymes (grey rot) - yeast & acetic acid bacteria - phenolics - dissolved oxygen - pH - SO2 - temperature - catalysts (e.g. copper ions)
	Stabilisation - pasteurisation (laccase) - storage at low temperature, SO2 (browning)
43. Reduction	H2S (rotten eggs), mercaptans, organic sulphides, thiols (garlic or onion) Removal - aeration - copper sulphate; silver chloride
44. Microbial spoliage	Microorganisms - lactic acid bacteria - acetic acid bacteria - yeast - moulds Factors - pH (high) - alcohol (< 15%) - temperature (20-35 C) - SO2 (free 20 mg/l) - residual sugar - nutrients - air (for acetic bacteria) - winery hygiene
45. Lactic acid bacteria	useful for MLF not for light, fruity whites Wines with low acidity - breakdown of tartaric acid - slimy and "ropy" texture Prevention - SO ₂ (20 mg/l) - clarification - goog winery hygiene
46. Acetic acid bacteria	Converts alcohol to acetic acid (vinegar) Form ethyl acetate (ethyl ethanoate) - acetone (nail polish remover) Prevention - minimize air - SO2 (20 mg/l) - good winery hygiene

Sterile filtration at bottling
Surface "film" spoilage yeasts (Candida) - flor on surface of wine that is in contact with air - oxidise ethanol to produce acetaldehyde (ethanal) - yeasty taint - prevention - barrels fully "topped up" or blanketed with inert gas - SO2 (20 mg/l) - good winery hygiene
Brettanomyces - 4-ethyl-phenol and 4-ethylguaiacol - brett taint (farmyard and sticking-plaster flavours) - high pH Syrah and Cabernet Sauvignon - prevention - sterile filtration - DMDC (dimethy dicarbonate) - SO2
Re- fermentation - cloudiness and gasiness - prevention - sterile filtration - sorbic acid (potassium sorbate; 100 - 200 mg/l; strange, rancid flavour; metabolised by lactic acid bacteria to create an aromatic compound that smells of geraniums)
Hot or cold temperature Whites: haze, cloudiness or deposit Reds: deposit of pigmented tannins and protein Removal by bentonite fining
Fined with albumen (egg whites) or gelatin
Max in EU - 1 mg/l Causes - contact with copper, tin or bronze equipment - use of copper sulphate to eliminate H2S and mercaptans - use of copper sulphate to combat powdery mildew Gas chromatography - direct sunlight for 7 days Effects - copper casse in whites (reddish-brown haze and deposit) Prevention - bentonite fining - gum arabic - potassium ferrocyanide (blue fining) - highly toxic

51. Excess iron	Max in EU - 10 mg/l
	Causes - soil with high levels of iron - mild steel or cast iron containers or crusher rollers
	Gas chromatography - excess oxygen in cool, dark place for 48 hours
	Effects - ferric casse in whites (haze and white deposit) - blue-black deposit in reds
	Prevention - citric acid (1 g/l) - gum arabic - ascorbic acid - potassium ferrocyanide (whites) and calcium phytate (reds)
52. Quality control	Series of anlyses and tests - compliance with regulations - stability - faults and other contaminants
	Carried out at - bulk storage of wine - transportation - bottling
53. QC - bulk storage	Vessels topped off or blanketed with inert gas Stable cool temperature (< 15 C) No exposure to sunlight SO2 (25-30 mg/l for dry reds; 35 mg/l for dry whites)
54. QC - transportation	Cool storage temperatures (avoid shipping in summer; refrigerated containers and lined containers) SO2 Inert gas in headspace of vessels No exposure to sunlight
	Sweet wines imported in bulk into the EU cannot be shipped as dry wines and sweetened at bottling.

55. QC - bottling	Prevent - oxygen - microbial contamination - bottle dirt, cork dust, grease, insects
	 HACCP (Hazard Analysis and Critical Control Point) food safety procedure to reduce hazards to acceptable compulsory in EU hazards (physical, chemical, microbiological) Remove or monitor CCPs (Critical Control Points) preventative action plan minimize likelihood of something serious identify most likely reasons for errors
	CCPs in bottling - check bottles - control fill - no contamination - check corks
	ISO 9001 - quality managment system - set of procedure - records - review
56. Bottling operation	Pre-bottling analysis
57. Pre-bottling analysis	Equipment - gas chromatograph - atomic absorption spectrometer
58. SO2	- titration with iodine - alkaline to release bound SO2 before titration - aspiration method (EU)
59. Volatile acidity (VA)	- acetic acid - glass still to distill VA - titration with sodium hydroxide - enzymatic assay - HPLC (high performance liquid chromatography)
60. Titratable acidity (total acidity)	 - de-gassed sample to an end point of pH 7.0 - sodium hydroxide - g/l tartaric acid (sulphuric acid in France x 5/3) - table wines (> 4.5 g/l), avg 5-7 g/l, high 8 g/l
61. Malic acid and lactic acid	- paper chromatographic procedure - HPLC
62. Other acids	Sorbic acid - colorimetric procedure - wines for Japan
	Ascorbic acid - simple titration or HPLC
	Metatartaric acid - HPLC
	Citric acid - HPLC

63. Alcohol	- distillation and hydrometrics - ebulliometer
64. Residual sugar	- Fehlings titration with copper salts - enzymatic assay or HPLC
65. pH	 pH meter most wines: 2.8 to 4.0 cool-climate whites: 3.0 to 3.2 hot-climate reds: 3.4 to 3.6 softer, ripe reds: > 3.7
66. CO2	- measured enzymatically or by titration - 600-1000 mg/l is common
67. Total dry extract (TDE)	- measures all things non-volatile - detection of fraudulent practices - dry whites: 16 - 20 g/l
68. Stability analysis	Tartrate stability (cold stability) 4 C liquid bath for 72 hours Protein stability (heat stability) - heated to 90 C for 6 hours
69. Trace metals	Metal analysis - copper, iron, potassium, calcium, sodium - flame atomic absorption spectrophotometer Anion analysis - choride and sulphate - HPLC
70. Dissolved oxygen (DO)	- oxygen meter - < 0.3 mg/l to minimize oxidation - "sparged" with nitrogen or CO2
71. Microbial populations	Yeast, bacteria - petri dish - microscope
72. Taint analysis	3 main halo-anisoles (musty odours) - TCA (2,4,6-tricholoranisole) - TeCA (2,3,4,6-tetrachloroanisole) - TBA (2,4,6-tribromonoanisole) Causes
	- cellar atmosphere - tanks, barrels, oak chips, filter pads, closures, bentonite
	GC-MS (gas chromatography-mass spectrometry)
73. Bottling equipment	Membrane filter (0.45 micron for sterile filtration) Bottle rinser (filtered water and acidified SO2 solution) Filler (siphoning, gravity, differential pressure) Corker (capper) Labeller
74. Bottling options	Traditional bottling (dry wines) Aseptic bottling - filtration (e.g. cold sterile filtration) - heat treatment (e.g. flash pasteurisation, tunnel pasterurisation, thermotic bottling)

75. Cold "sterile" (aseptic) filtration	 Sterilise bottling line equipment hot most steam at 115 C hot water for 20 minutes Wine to pass through sterile membrane into bottle aromatic whites with residual sugar (no MLF) fruity red wines Advantages simple, cheap, reliable no risk of re-contaminiation or re-fermentation in bottle Disadvantages training of staff costs (hot water, membrane filters)
76. Bottling using heat	Wines of moderate quality Flash pasteurisation - high temp for short period of time - 80 - 90 C for few second, then rapid cooling - pros: simple equipment, min damage to wine - cons: re-infection, operator training - low end reds and whites Tunnel pasteurisation
	 high temp for medium length of time bottles pass through heated tunnel, sprayed by hot water over 80 C for 15 minutes cold water sprays pros: no need for sterile bottling cons: expensive equipment, heat damage low end sparklings
	Thermotic bottling - medium temp for a long time - heat to > 55 C - fill bottle with warm wine, sealed and cooled - pros: no need for sterile bottling; advance maturity of young reds - cons: filling levels - bulk, low end wines
77. Packaging	Contain the wine (transport, store, serve) Protect wine against contamination and degradation Provide information Appeal to consumers

- 78. **Containers** Glass bottles
 - inert, impermeable, cheap to produce
 - coloured to reduce UV
 - shrink-wrapped while still hot
 - 3 shapes (Bordeaux, Burgundy, German/Alsace Flute)

Bag-in-box

- polyester film coated with aluminium foil, between two layers of high density polyethylene
- 2, 3, 5, 10, 20 litres
- prone to oxidation, high SO2 dosage
- tartrates can clog tap
- not for wines with high level CO2
- not for wines requiring bottle maturation
- limited shelf life (12 months)

Plastic containers

- little protection against oxygen transfer
- short shelf life
- negative image
- PVC (no protection against light, oxygen): few week life
- PET (ligh, robust, recyclable), short life

Other composite cartons

- paper laminate, foodgrade polyethylene, aluminium foil
- Tetra pak (1 and 2 litres)
- low cost "sterile" packaging
- image problems

	Aluminium cans	
	- plastic liner	
	- light, fully recyclable	
79. Closures	Reliable seal	
	Inert	
	Easy to remove	

80. Closures for glass bottles

Natural cork

- Quercus suber
- elastic, resilient, compressible, impermeable to liquids
- 44 x 24
- cock taint (TCA, TBA, TeCA)
- gas chromatography with mass spectrometry
- solid phase micor-extraction
- Steam distillation
- Oeneo: supercritical CO2

Technical cork-based closures

- Agglomerated cork stopper
- cork bits stuck together by resin-based glue
- Diam and Neutrocork
- Colmated cork stopper
- natural cock covered with cork dust and latex
- types of technical corks
- 1 + 1/2 + 2 (cork discs at either ends) e.g. TwinTop by Amorin
- DIAM by Oeneo (agglomerated, supercritical CO2)

Synthetic closures

- foodgrade plastics
- ethylene vinyl acetate, silicone oil coating
- inexpensive
- 5 yrs shelf life
- negative consumer perception & non-recyclability
- Nomacorc, Supremecorq, Neocork, Intega

Screwcaps

- aluminium alloy cap
- polyethylene / tin liner
- cheaper, easy to remove, inert, long life, tight seal
- costs of bottling equipment, special bottles, reduction

Crown caps

- Champagne aging
- cheap, easy to apply, tight seal, long life
- consumer preception

Vinolok

- Germany
- glass/plastic bottles
- no TCA, easy to open, no odour, stylish
- questionable for long-term storage